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Abstract Polythieno[3,2-b]thiophene (PTT) was electro-
synthesized by facile anodic oxidation of thieno[3,2-b]
thiophene (TT) in three systems: boron trifluoride diethyl
etherate (BFEE), acetonitrile (ACN), and dichloromethane
solutions. The onset oxidation potential of TT in BFEE
was determined to be 0.62 V vs. Ag/AgCl, which was
much lower than those in ACN and dichloromethane
solutions. PTT films exhibited excellent electrochemical
property, high thermal stability, good redox activity, and
stability. Free-standing PTT films with good mechanical
property can be obtained from BFEE solution, whose
structure and morphology were characterized by FT-IR,
UV–visible spectra, and scanning electron microscopy.
With an electrical conductivity of 1.5 Scm−1 and a
Seebeck coefficient of 85 µV K−1 at 306 K, the as-
prepared free-standing PTT films showed a certain
thermoelectric property. The dimensionless figure-of-
merit of PTT films was estimated to be 2.3×10−3 at
306 K, which was much higher than those of some organic
thermoelectric materials reported previously. All these
results indicated that PTT films may have potential
applications in the thermoelectric field.
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Introduction

After the discovery of conductive polyacetylene in 1977
[1, 2], conjugated polymers have been well known for their
interesting electrical and optical properties [3]. Since then,
the synthesis of novel conjugated polymers with sophisticat-
ed properties and the exploration for new wider application
fields for the already intensively investigated conducting
polymers have been a subject of current intense research.
Among the most extensively studied conjugated materials,
oligomers and polymers containing thiophene units have
received considerable attention because of their relatively
good environmental stability, excellent electrical and optical
properties, and tunability at the molecule level [4–6]. Thieno
[3,2-b]thiophene (TT), with two condensed thiophene rings,
has been investigated mainly by chemical oxidation, and the
as-formed oligomers or polymers based on TT have attracted
much attention because of their very rigid backbone which
leads to good packing, high charge mobility, and high
thermal stability [7–11]. However, few attentions have been
focused on the electropolymerization of TT and properties of
polythieno[3,2-b]thiophene (PTT) [12–15].

As well known, conjugated polymers can be synthesized
chemically or electrochemically. Electrochemical polymer-
ization has been proved to be one of the most useful
approaches for conducting polymer synthesis with several
advantages [16–22]. Firstly, one-step conducting film can
be formed on the working electrode. Secondly, the amount
of the polymer deposited on the electrode can be controlled
by the integrated charge passed through the cell. Thirdly,
only small amounts of monomer are required. Lastly,
electrochemical studies can give fast information on the
properties of electropolymerized materials with good
accuracy and precision. However, the solvent chosen is a
very important factor during the electrosynthesis of con-
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ducting polymers [23]. According to the literature reported
previously, conducting polymer films with high quality can
be easily prepared in boron trifluoride diethyl etherate
(BFEE) or its mixed electrolytes [17–22], mainly because
of its good ionic conductivity and catalyst effect on the
electropolymerization process of aromatic monomers,
which make polymerizations of these monomers occur at
lower potentials. Under this circumstance, BFEE serves not
only as the solvent but also as the supporting electrolyte
and no other supporting electrolyte is needed. In general,
conducting polymer films electrodeposited from BFEE
exhibit good electrical or optical properties, which will be
of great benefit to their applications in electronic devices.

On the other hand, besides the extensively studied
applications in sensors, polymeric light-emitting diodes,
polymeric field-effect transistors, and photovoltaic cells
[24–28], the novel and potential applications of conjugated
materials in thermoelectric power generators and Peltier
coolers, have also attracted much attention in recent years
[29–34]. The efficiency of a thermoelectric material is
related to the so-called dimensionless thermoelectric figure-
of-merit (ZT) as defined by Eq. 1:

ZT ¼ S2sð ÞT
k

ð1Þ

where S is the Seebeck coefficient, σ is the electrical
conductivity, T is the absolute temperature, and κ is the
thermal conductivity. A good thermoelectric material has a
high ZT value at the operating temperature. The conven-
tional thermoelectric materials are inorganic thermoelectric
materials, which have mainly been investigated and
developed at present, such as bismuth telluride [35–39].
However, the inorganic thermoelectric materials involve
some issues such as toxicity, a shortage of natural
resources, and complicated manufacturing processes with
high cost [40, 41], while organic polymers are considered
to be suitable for widespread use in applications because of
the potentially low cost due to an abundance of carbon
resources, easy synthesis in general, and easy processing
into versatile forms [42–46]. Moreover, their low thermal
conductivity is generally expected to be advantageous in
enhancing thermoelectric properties [40]. Based on the
above, some organic polymers and copolymers with rela-
tively better thermoelectric properties have been reported in
recent years, such as poly(2,5-dimethoxyphenylenevinylene)
[40], copolymer of phenylenevinylene and dialkoxypheny-
lenevinylene [41], poly(2,7-carbazole) derivatives [42, 43],
polycarbazole, polyindolocarbazole and polydiindolocarba-
zole derivatives [44], poly(3-octylthiophene)/silver nano-
composites [45], and poly(3,4-ethylenedioxythiophene)/
poly(4-styrenesulfonate) (PEDOT/PSS) [46], etc. However,
the study on the thermoelectric property of PTT has never

been reported. Furthermore, according to the literature, there
are significant improvements of the Seebeck coefficient of
polydiindolocarbazole and its derivatives compared with
those of polyindolocarbazole and polycarbazole, as the fused
rings of the monomer increased [44]. Thus, it was expected
that the Seebeck coefficient of PTT might be higher than that
of polythiophene (PT) because of the extended π-conjugated
structure.

In this paper, we synthesized TT according to the literature
procedures [47] (Scheme 1). Then, TT has been electro-
polymerized in BFEE, acetonitrile (ACN) + 0.1 mol L−1

tetrabutylammonium tetrafluoroborate (Bu4NBF4), and
CH2Cl2 + 0.1 mol L−1 Bu4NBF4 solutions, respectively.
Comparative experiments have been carried out to optimize
the proper electropolymerization system for TT. The
electrochemical property, spectral characterization, thermal
stability, and morphologies of the obtained PTT films were
studied, respectively. The thermoelectric property of the
obtained free-standing PTT films from BFEE was also
investigated on.

Experimental details

Chemicals

BFEE (AR, Beijing Changyang Zhenxing Chemical Plant,
China), commercial high-performance liquid chromatography-
grade acetonitrile (AR, Beijing East LongshunChemical Plant,
China), dichloromethane, tetrahydrofuran (THF), and N,N-
dimethylformamide (DMF, AR, Beijing Chemical Plant,
China) were distilled before use. Concentrated sulfuric acid
(AR, Ji’nan Chemical Reagent Company, China), diisopro-
pylamine, N-formylpiperidine, and ethyl 2-sulfanylacetate
(AR, Shanghai Zhuorui Chemical Plant, China), n-butyl-
lithium (Shangyu Hualu Chemical Co., Ltd., Zhejiang,
China), NH4Cl (AR, Beijing Chemical Plant, China),
quinoline (AR, Beijing Xizhong Chemical Plant, China),
K2CO3 and LiOH·H2O (AR, Tianjin Hengxing Reagents
Factory, China), and copper powder (99.5%, AR, Tianjin
Bodi Chemical Co., Ltd., China) were all used without
further purification. Bu4NBF4 (98%) was purchased from
J&K Chemical Ltd and dried in vacuum at 60°C for 24 h
before use.

Electrochemical examination

Electrochemical polymerization and examination were
carried out in a one-compartment three-electrode cell with
a Model 263 potentiostat–galvanostat (EG&G Princeton
Applied Research) under computer control at room tem-
perature. The working and counter-electrodes for cyclic
voltammetry (CV) experiments were two platinum wires
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with a diameter of 0.5 mm, respectively, and placed 0.5 cm
apart. Before each examination, they were carefully
polished and cleaned with water and acetone successively.
An Ag/AgCl electrode immersed directly in the solution
was used as the reference electrode. A correction of
0.069 V is needed to bring the measured potentials in
BFEE originally vs. Ag/AgCl to potentials vs. the standard
hydrogen electrode [48]. To obtain a sufficient amount of
polymer, a platinum sheet with a surface area of 4.5 cm2

and a stainless steel sheet with a surface area of 5.0 cm2

were employed as the working and counter-electrodes,
respectively, and they were carefully polished with abrasive
paper (1500 mesh) and then washed with water and acetone
successively before each examination. The polymers
deposited on indium tin oxide (ITO) glasses (about
2.0 cm2) were used for ultraviolet–visible (UV–visible)
measurements and scanning electron microscopy images.

All solutions were deaerated by a dry argon stream
before the experiments. For a special analysis, the as-
formed polymers were de-doped with 25% ammonium for
3 days and then washed repeatedly with water and acetone.
Lastly, they were dried at 60°C for 2 days in vacuum.

Measurements and characterization

The temperature dependence of both electrical conductivity
(σ) and Seebeck coefficient (S) were measured by a four-
point measurement unit of thermoelectric properties coupled
with a liquid nitrogen container for rectangular-shaped film
samples (length, 12.0 mm; width, 4.0 mm; thickness,
0.10 mm) at temperatures from room temperature to
100 K. Cu (99.9%) wires as electrodes and the thermocou-
ples were bound to a sample with conductive paste. When
constant DC current was applied between Cu electrodes
placed in both edges of a sample across the length, potential
drop was detected between Cu wires of the thermocouples

placed on the center of the sample surface with a certain
distance. Electrical conductivity was determined with the
potential drop, the applied current, and sample dimensions.
Seebeck coefficient was obtained from the slope of the
produced thermoelectric voltage as a function of the tem-
perature difference along the length of the sample. The
power factor (P = S2σ) was calculated from the
corresponding Seebeck coefficient and electrical conductiv-
ity at a certain temperature.

UV–visible spectra were measured with a Perkin-Elmer
Lambda 900 UV–visible–near-infrared spectrophotometer.
Infrared spectra were recorded with a Bruker Vertex 70
Fourier transform infrared (FT-IR) spectrometer with
samples in KBr pellets. Thermogravimetric analysis was
performed with a Pyris Diamond TG/DTA thermal analyzer
(Perkin-Elmer). AVEGA\\LSU TESCAN scanning electron
microscope was used to analyze the surface morphologies
of the as-formed polymer films.

Results and discussion

Electrochemical polymerization of TT

Figure 1 shows the anodic polarization curves of
0.02 mol L−1 TT in BFEE (a), ACN (b), and CH2Cl2 (c)
solutions. The onset oxidation potential of TT in BFEE was
about 0.62 V, which was much lower than those in ACN
(1.32 V) and CH2Cl2 (1.35 V) solutions. This can be
attributed to the interaction between the middle strong Lewis
acid BFEE and the aromatic monomer (coordination
between the sulfur atom of the monomer and BF3), which
decreases the aromaticity of the fused rings and has a
catalytic effect on the electropolymerization of the aromatic
monomer [49, 50]. The above condition indicates that the
oxidation and polymerization of TT in BFEE is much easier
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than those in ACN and CH2Cl2 solutions. Based on these
results, BFEE may be the better electrolyte for the electro-
polymerization of TT with less side reactions, affording
higher-quality polymer films. Moreover, the onset oxidation
potential of TT in BFEE (0.62 V) is also lower than that of
thiophene (1.10 V vs. Ag/AgCl) recorded in a similar
medium [17], which can be ascribed to the extended
π-conjugated structure of the TT molecule.

The successive cyclic voltammograms (CVs) of
0.02 mol L−1 TT in BFEE (a), ACN (b), and CH2Cl2 (c)
solutions on a Pt wire electrode, respectively, are shown in
Fig. 2. As the CV scanning continued, conducting polymer
films were formed on the working electrode surface as
observed by visual observation. The increase in the redox
wave current densities implied that the amount of conduct-
ing polymer deposited on the working electrode was
increased. Moreover, the broad redox waves of the as-
formed polymer films were attributed to the wide distribu-
tion of the polymer or oligomer chain length [51] or the
conversion of conductive species on the polymer main
chain from the neutral state to polarons, from polarons to
bipolarons, and finally from bipolarons to the conductive
state [52]. For the CVs recorded in BFEE (Fig. 2a), redox
waves can be found at 0.53 V and −0.10 V. Wider reduction
waves can be seen at 0.80 V in the CVs recorded in ACN
(Fig. 2b) and CH2Cl2 (Fig. 2c) solutions, while the
oxidation waves were unobvious for these CVs, especially
for the CVs recorded in the CH2Cl2 solution, revealing bad
reversibility. In comparison, the electroactivity and the
reversibility of the electron transfer during the electro-
polymerization of TT in BFEE was better than those in
ACN and CH2Cl2 solutions. The slight potential shift of the
wave current density maximum on the CVs provided
information on the increase in the electrical resistance of
the polymer films, and higher potentials were needed to
overcome the resistance [53]. Furthermore, as the first
circle of each CVs presented in different colors shown, TT

in BFEE, ACN, and CH2Cl2 solutions can be initially
oxidized at 0.61 V, 1.36 V, and 1.35 V, respectively, similar
with those recorded in Fig. 1. The minute differences
between the two groups of data are reasonable and
acceptable, suggesting good stability of the systems and fine
repeatability of the electrochemical experiments, and they
can be caused by surrounding temperature, air humidity, and
even parallax reading error.

Electrochemistry of PTT films

The electrochemical behaviors of PTT films deposited in
BFEE (Fig. 3a, b), ACN (Fig. 3c, d), and CH2Cl2 (Fig. 3e, f)
solutions were tested in monomer-free BFEE (Fig. 3a), ACN
(Fig. 3c), CH2Cl2 (Fig. 3e), and concentrated sulfuric acid
(Fig. 3b, d, f), respectively. Similar to the results reported
previously [54–57], these CVs represented broad anodic and
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Fig. 2 Cyclic voltammograms of 0.02mol L−1 TT in a BFEE, b ACN +
0.1 mol L−1 Bu4NBF4, and c CH2Cl2 + 0.1 mol L−1 Bu4NBF4 solutions.
Potential scan rate, 100 mV s−1
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Fig. 1 Anodic polarization curves of 0.02 mol L−1 TT in a BFEE, b
ACN + 0.1 mol L−1 Bu4NBF4, and c CH2Cl2 + 0.1 mol L−1 Bu4NBF4
solutions. Potential scan rate, 20 mV s−1
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cathodic peaks, which might be attributed to the coupling
defects distributed statistically during the electropolymeriza-
tion process, resulting in the wide distribution of the polymer
chain length [51]. For PTT films deposited in BFEE, it could
be oxidized and reduced from 0.55 V (anodic peak potential,
Ea) to 0 V (cathodic peak potential, Ec) in monomer-free
BFEE (Fig. 3a) and from 0.47 V (Ea) to 0.42 V (Ec) in
concentrated sulfuric acid (Fig. 3b). The ratio of Ea/Ec was
determined to be close to 1 in concentrated sulfuric acid and
the peak current densities at the constant potential scan rate
were almost the same, which might suggest the good redox
activity and reversible doping/dedoping process of the PTT
films. Similar results can also be found in the CVs recorded
in monomer-free ACN (Fig. 3c), CH2Cl2 (Fig. 3e), and
concentrated sulfuric acid (Fig. 3d, f). For PTT that

deposited from BFEE, obvious reversible voltammetry can
be observed in the monomer-free solution in comparison to
the case of CH2Cl2 and ACN, which may be attributed to the
high-quality PTT films and the more facile counter-ion
diffusion in BFEE solution. In BFEE, the oxidation
potentials of aromatic monomers are usually much lower
than those recorded in common neutral or strongly acidic
solvents, which will not initiate the over-oxidation and
additive polymerization of the monomer. As a result, a high-
quality polymer film with good mechanical and conductive
properties is obtained, which will contribute to its reversible
performance during cyclic voltammetry experiments. On the
other hand, BFEE can exist in diethyl ether as a polar
molecule, C2H5ð Þ3Oþ� �

BF�4 , which furnishes a conducting
medium, and the ion conductivity of BFEE can be up to
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Fig. 3 Cyclic voltammograms
of PTT films recorded in
monomer-free a BFEE,
c ACN + 0.1 mol L−1 Bu4NBF4,
e CH2Cl2 + 0.1 mol L−1

Bu4NBF4, and b, d, f concen-
trated sulfuric acid at different
potential scan rates, respectively.
These PTT films were deposited
in a, b BFEE, c, d ACN +
0.1 mol L−1 Bu4NBF4, and e, f
CH2Cl2 + 0.1 mol L−1 Bu4NBF4
solutions at constant potentials
of 0.80, 1.40, and 1.45 V vs.
Ag/AgCl, respectively. j, jp.a,
and jp.c are defined as current
density, anodic peak current
density, and cathodic peak
current density, respectively
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2.97×10-4S cm−1 at 25°C, which will be beneficial to
the diffusion of counter-ion between the solution and
the polymer film. As the oxidation/reduction process of the
polymer film is related to the counter-ion in/out of the
conducting film, therefore, the more facile counter-ion
diffusion in BFEE solution properly contributes to the
reversible cyclic voltammetry performance. On the whole,
all as-formed PTT films could be cycled repeatedly between
conducting (oxidized) and insulating (neutral) states, without
a significant decomposition of the material in corresponding
monomer-free solutions, implying high redox activity and
stability of the PTT films. A summary of the oxidation and
reduction potentials of these polymer films in different
electrolytes is listed in Table 1.

From the insets in Fig. 3, a linear dependence between
current density and potential scan rate can be clearly
observed in Fig. 3a, b, c, e, suggesting good redox
reversibility and high electrochemical activity of PTT films
in corresponding media. While the CVs of PTT films
deposited from CH2Cl2 and ACN media recorded in
monomer-free concentrated sulfuric acid (Fig. 3d, f), the
peak current density increased slowly rather than propor-
tionally as the potential scan rate increased from 25 to
300 mV s−1, and no linear dependence between them was
found, especially for that in Fig. 3f. This can be attributed
to that in CH2Cl2 and ACN media; TT exhibited a higher
onset oxidation potential (1.35 and 1.32 V, respectively)
compared with that in BFEE (0.62 V), which may easily
cause the over-oxidation of the monomer or oligomer and,
subsequently, impact on the regularity of the π-conjugated
chain structure and/or polymer chain packing. The above
condition will cause bad electrochemical stability, low
conducting property, and redox irreversibility of the
polymer films in concentrated sulfuric acid. Moreover, the
doped ions BF�4 diffusion between film and solution may
also have contributions to the defective voltammetry
performance of PTT film in concentrated sulfuric acid.

It is well known that good stability of conducting
polymer films is needed to their applications in electronic
devices [58]. Therefore, the long-term stability of the redox

activity of the PTT film prepared from BFEE was also
investigated in monomer-free BFEE (Fig. 4). The extended
CVs were recorded between 0.90 and −0.25 V for 200
cycles, at a potential scan rate of 100 mV s−1. The as-
formed PTT film could be cycled repeatedly between the
conducting (oxidized) and insulating (neutral) states with-
out significant decomposition, indicating high redox activ-
ity and stability of PTT films.

Structural characterization

Similar with PT, the solubility of PTT films prepared from
BFEE, ACN, and CH2Cl2 solutions were bad and they
hardly dissolve in most common organic solvents, such as
ethanol, acetone, dimethyl sulfoxide (DMSO), ethyl ether,
chloroform, DMF, and THF. The UV–vis spectra of PTT
films deposited on ITO glasses potentiostatically in BFEE
(a), ACN (b), and CH2Cl2 (c) solutions were shown in
Fig. 5. The absorption of monomer TT dissolved in DMSO
(inset of Fig. 5) showed a characteristic absorption at about
350 nm, which was assigned the π–π* transition of thienyl
rings. As shown in Fig. 5, all the absorption spectra of PTT
films synthesized in BFEE, ACN, and CH2Cl2 systems
showed broad and strong absorptions from 366 to 616 nm,
with a maximum absorption at about 475 nm, reflecting the
enhanced π-conjugated region and the wide distribution of
the length of the polymer main chains. Consequently, the
absorption peaks of PTT performed greatly red-shift
compared with that of the monomer TT. These results
confirmed the formation of a new conjugated conducting
polymer.

Figure 6 shows the FT-IR spectra of TT monomer (a)
and PTT electrodeposited from BFEE (b), ACN (c), and
CH2Cl2 (d) in de-doped state. As the spectrum of TT shown
(a), the bands at 3,122, 924, 875, 777, and 680 cm−1 were
assigned to stretching modes and deformation vibrations of
C–H in the thiophene rings [14, 15], and the corresponding
bands at 3,130 and 785 cm−1 could be observed in the
spectra of PTT (b–d). The bands at 1,616, 1,412, and
1,347 cm−1 originated to the stretching modes of C=C and

Table 1 Redox peak potentials of the CVs of PTT films electro-
deposited in BFEE, ACN + 0.1 mol L−1 Bu4NBF4, and CH2Cl2 +
0.1 mol L−1 Bu4NBF4 solutions potentiostatically. The CVs were

recorded in monomer-free BFEE, ACN + 0.1 mol L−1 Bu4NBF4,
CH2Cl2 + 0.1 mol L−1 Bu4NBF4, and concentrated sulfuric acid,
respectively. All the potentials were versus Ag/AgCl

BFEE ACN + Bu4NBF4 CH2Cl2 + Bu4NBF4 Concentrated sulfuric acid

Epa Epc Epa Epc Epa Epc Epa Epc

PTT (BFEE) 0.48 0.02 0.47 0.45

PTT (ACN) 1.20 0.93 0.70 0.40

PTT (CH2Cl2) 1.30 0.94 0.73 0.38

Epa anodic peak potential (V), Epc cathodic peak potential (V)

Table 1 Redox peak potentials of the CVs of PTT films electro-
deposited in BFEE, ACN + 0.1 mol L−1 Bu4NBF4, and CH2Cl2 +
0.1 mol L−1 Bu4NBF4 solutions potentiostatically. The CVs were

recorded in monomer-free BFEE, ACN + 0.1 mol L−1 Bu4NBF4,
CH2Cl2 + 0.1 mol L−1 Bu4NBF4, and concentrated sulfuric acid,
respectively. All the potentials were versus Ag/AgCl
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C–C, and the band at 680 cm−1 was assigned to the
stretching vibration of C–S–C. For the polymers,
corresponding vibration bands at higher or lower wave
numbers (1,625, 1,404, 1,138, 1,090, and 638 cm−1) were
observed (b–d). After polymerization, some vibration bands
disappeared in the spectra of PTT compared with that of TT
monomer, and the PTT samples synthesized from different
systems showed very similar FT-IR spectra (b–d), indicat-
ing the similar composition of the samples.

Thermoelectric property

In BFEE solution, free-standing PTT films could be directly
peeled off from the working electrode surface by hand and
also could be cut into kinds of shapes with a pair of scissors
(Fig. 7). The temperature dependence of electrical conduc-
tivity (σ) and Seebeck coefficient (S) of these free-standing
PTT films were measured, as shown in Fig. 8. For PTT
films electrodeposited from ACN and CH2Cl2 solutions,
they were both so brittle that were hard to form free-

standing films and it was also difficult to press the crushed
PTT powder into pellets. Thus, the thermoelectric measure-
ments for PTT synthesized from ACN and CH2Cl2 systems
suffered a failure.

As shown in Fig. 8, the electrical conductivity of PTT
films was 1.5 Scm−1 at 306 K, much higher than that
reported previously [12, 15]. With a decrease in the
temperature, the electrical conductivity decreased gradually,
a typical behavior of semiconductors [40–46, 59–61]. From
306 to 200 K, the electrical conductivity took a much rapid
decrease in speed, and it slowed down when below 200 K.
When the temperature reached 100 K, the electrical
conductivity decreased to 0.02 Scm−1. Similar with electrical
conductivity, the Seebeck coefficient of PTT films decreased
gradually as the temperature decreased (Fig. 8). At 306 K,
the Seebeck coefficient of PTT films could be up to
85 µV K−1, and when the temperature decreased to 140 K

Fig. 7 Photograph of free-standing conducting PTT films prepared
from BFEE at the constant applied potential of 0.80 V vs. Ag/AgCl
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Fig. 5 UV–vis spectra of de-doped PTT films deposited on ITO glasses
from a BFEE, b ACN + 0.1 mol L−1 Bu4NBF4, and c CH2Cl2 +
0.1 mol L−1 Bu4NBF4 solutions, respectively. Inset, UV–vis spectrum of
TT in DMSO
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it correspondingly decreased to 38 µV K−1. The Seebeck
coefficient is positive, indicating that the charge carriers are
holes [62]. By comparison with the thermoelectric properties
of PT and poly(3-methylthiophene) (PMeT) films [59], the
Seebeck coefficients of PTT films are higher than those of
PT (28-43 μV K−1) and PMeT films (18-31 μV K−1) at
corresponding temperatures. However, the measured electri-
cal conductivities of PTT films are much lower than those of
PT and PMeT films [59], possibly because of the low purity
of TT monomer, the relatively rougher film surface, or the
polymerization conditions of the system and the surround-
ings. Therefore, further studies aiming to improve the
electrical conductivity of PTT films are quite essential in
the future research on PTT.

Figure 9 shows the temperature dependence of power
factor P (=S2σ) and the estimated dimensionless figure-of-
merit ZT values of PTT films. The power factor of PTT
films was 1.1 µW m−1K-2 at 306 K. Since the power factor
is proportional to the square of the Seebeck coefficient and
the electrical conductivity, thus the power factor decreased
as the temperature decreased. Obviously, the thermoelectric
property of PTT films is much sensitive to the temperature.

The dimensionless figure-of-merit ZT values of PTT
films have not been calculated because the thermal
conductivity measurement process of one material is

complicated and the thermal conductivity (κ) of PTT
films has not yet been evaluated. However, as the
literature reported, the differences between the thermal
conductivities (κ) of most organic thermoelectric materials
are usually very little, such as polyaniline (κ, 0.02–0.15 W
m−1K−1; T, 300 K; different doping level) [60], PEDOT:
PSS (κ, 0.04–0.17 Wm−1K−1; T, 150–290 K) [61], PT
(κ, 0.03–0.17 Wm−1K−1; T, 100–320 K) [59], and PMeT
(κ, 0.02–0.15 Wm−1K−1; T, 100–320 K) [59]. Considering
the similar molecule structures of PTT with PT and the
little differences between the thermal conductivities of
most organic thermoelectric materials, we estimated the
ZT values of PTT films based on the thermal conductiv-
ities of PT films. As shown in Fig. 9, the ZT value of PTT
at 306 K was 2.3×10−3 and it slightly decreased to 2.2×
10−3 when the temperature decreased to 280 K; as the
temperature continuously decreased to 266 K, the ZT
value increased slowly to the maximum value of 2.5×
10−3, which was higher than those of PEDOT:PSS pellets
(1.75×10−3) [61] and polyaniline films (1×10−4) [63].
Then, the ZT values decreased again as the temperature
continued to decrease. The difference between the ther-
moelectric performances of PTT films and inorganic
thermoelectric materials such as β-FeSi2 (Z, ca. 2×10−4

K−1; ZT, 6×10−2) [64] is not so much that some more
intensive study can be done to narrow the gap between
them.

Thermal property

For conducting polymers, thermal stability is very impor-
tant for their potential applications. To investigate the
thermal stability of PTT, thermogravimetric analytical
experiments were carried out under a nitrogen stream at
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AgCl potentiostatically
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a heating rate of 10 Kmin−1. Figure 10 shows the thermal
properties of PTT films in doped state electropolymerized
from BFEE (a), ACN (b), and CH2Cl2 (c) solutions,
respectively. The heat-degradation behavior of PTT films
from BFEE (a) was similar with that from ACN (b). From
300 to 396 K, they both went through a mass loss of 5%,
mainly because of some water or moisture trapped into the
polymer matrices. From 396 to 565 K, they got another
weight loss of 10% and this was caused by the degradation
of the oligomers. When the temperature reached 800 K, a
serious mass loss happened to them, which indicated the
decomposition of the skeletal PTT main chain structure.
For PTT electrodeposited in CH2Cl2 (C) solution, it
initially went through a slow degradation of about 21%
as the temperature increased from 300 to 820 K, and this
might be attributed to the degradation of the oligomers
obtained during the polymerization process. When the
temperature reached 865 K, a rapid mass loss occurred,
revealing the decomposition of the skeletal PTT backbone
structure. The above results suggested that the obtained
PTT films, no matter if polymerized from BFEE, ACN (b),
or CH2Cl2 (c) solutions, all exhibited good thermal
stability.

Conclusions

In summary, we successfully synthesized TT monomer and
electrosynthesized PTT films from BFEE, ACN + 0.1 mol L−1

Bu4NBF4, and CH2Cl2 + 0.1 mol L−1 Bu4NBF4 solutions,
respectively. By comparison, the PTT films prepared from
BFEE exhibited better electrochemical property, higher
structure, and thermal stability. In BFEE solution, free-
standing PTT films with good mechanical property could be
easily peeled off from the electrode surface by hand.
Moreover, the as-formed free-standing PTT films with an
electrical conductivity of 1.5 Scm−1 and a Seebeck coeffi-
cient of 85 µV K−1 at ambient temperature showed a good
thermoelectric property. The Seebeck coefficient of PTT film
is higher than those of PT and PMeT films, but the electrical
conductivity of PTT film is much lower than those of PT and
PMeT films, and much intensive studies should be done to
further analyze and improve the electrical property of the
PTT film. The calculated power factor P and the estimated
ZT value of PTT films were 1.1 µW m−1K-2 and 2.3×10-3 at
306 K, respectively, higher than those of some organic
thermoelectric materials reported previously. Therefore, PTT
films may have potential application as one novel organic
thermoelectric material.
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